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Figure 3.8 Schematic of the femtosecond-pump-tera-Hertz-probe-experiment. (Adapted after
Henry et al. [66].)

inorganic semiconductors which emit THz pulses upon acceleration of the photo-induced carriers
in an electric field or by excitation of non-linear crystals such as ZnTe. The electric field strength of
the THz pulse is even lower than that of microwave radiation. The detection is done by gating the
THz probe pulse with a femtosecond pulse of variable delay and with photoconductive or electro-
optical sampling. It is basically the reverse of the methods used to generate THz pulses.The Fourier
transformation of the pulses is used to calculate the refractive index and absorption. The complex
dielectric functions can be used to obtain the complex conductivity. Again, as in TRMC, the charge
generation efficiency of the organic material has to be known to obtain mobility in a time window of
1–40 ps. For a detailed description of THz spectroscopy, the reader is referred to Ref. [64].

3.3.1.7 Optical Probing
An independent and complementary method to measure the charge carrier mobility on ultra-fast
time scales has recently been introduced by Devižis et al. [67]. It is based on time-resolved electric-
field induced second harmonic generation (SHG). Any process that changes the electric field distri-
bution in the material will affect the temporal SHG signal. In turn, the SHG intensity can be taken
as a probe of changes of the electric field due to charge motion. Upon generating charge carriers in a
charged capacitor by a short laser flash, the moving charge partially shields the electric field and the
SHG efficiency decreases. Measuring the decrease of the SHG signal as a function of time after the
laser pulse yields the time dependence of the carrier motion.

3.3.2
Carrier Transport in the Band Regime and in the Hopping Regime

Charge transport in an organic semiconductor is controlled by the transfer of an electron in the
“LUMO” of a donor site to the empty LUMO of an electron accepting site. Equivalently, a hole can
be transferred at the HOMO level. A site may be a molecule or a conjugated segment of a polymer.
Electronic coupling among the sites is a necessary yet not sufficient condition for this charge transfer
process to occur. In a perfectly ordered crystal at T = 0K, an electron (or, equivalently a hole) would
move coherently within a band of states constructed from the LUMO (or HOMO) orbitals of the
constituent molecules with bandwidth 4β (cf. Section 2.4.3).When applying an electric field, a charge
carrier would move at a constant mobility due to scattering at the band edge. In a molecular crys-
tal, this condition is never met because of inadvertent structural irregularities. At finite temperature,
vibrations of the lattice will scatter the charge carrier in addition. However, as long as this scattering
process is only a weak perturbation to the overall coupling between the adjacent molecules, charge
transport can still be described in terms of a band model. This yields a mobility that decreases with
increasing temperature because the number of scattering events increases. So far we only considered
the so-called non-local coupling between a charge carrier and low energy, that is, long wavelength,
inter-molecular vibrations (phonons). However, at higher temperatures intra-molecular vibrations
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also become important.The reason is that once adding or removing an electron to or from amolecule
the distribution of the π-electrons changes (see Chapter 1).This can be expressed in terms of so-called
local phonon coupling, considering, though, that in this case the “phonon” is a molecular vibration
and the coupling is of the vibronic type (cf. Box 2.1). If the strength of this vibronic coupling becomes
comparable to the electronic inter-site coupling, a bandmodel becomes inappropriate. In the extreme
case, a charge carrier is scattered at each site, that is, there is a transition from a band transport to a
hopping-type motion.This is accompanied by a change of the temperature dependence of the charge
carrier mobility. A further complication arises when the material is not crystalline but microscopi-
cally disordered as realized in a molecular or polymeric glass. In this case transport is controlled by
(i) the electronic coupling among the constituentmolecular units, (ii) the coupling to intra-molecular
as well as inter-molecular vibrations, and (iii) the static intra- as well as inter-molecular disorder.
Depending on which coupling mode dominates, different transport models have been developed,

such as models based on band transport, polaronic models, and models that focus on the effects of
disorder. Organic solids encompass a broad class of materials, including molecular crystals, molec-
ular glasses, and polymeric glasses. It is necessary to obtain some basic understanding on which
parameters affect charge transport in order to assess which model may be suitable to describe a
particular experimental situation. In order to develop such a broader view and a general qualitative
understanding of charge transport, it is beneficial to consider the general one-electron Hamiltonian
shown in Eq. (3.34). In this approach, we follow the outline taken in [3].This Hamiltonian assumes a
low carrier density and effects due to electron correlation or Coulomb interaction are not considered.
Despite this limitation, this general one-electron Hamiltonian is useful to illustrate different limiting
cases.

H = H0 +H1 +H2 +H3 +H4 with

H0 =
∑
n
𝜖na†nan +

∑
𝜆
ℏ𝜔𝜆

(
b†𝜆b𝜆 +

1
2
)

electronic and vibrational excitation term

H1 =
∑
n,m
n≠m

Jnma†nam electron transfer term

H2 =
∑
𝜆

∑
n
g2n𝜆ℏ𝜔𝜆a†nan(b𝜆 + b†−𝜆) dynamic diagonal disorder term

H3 =
∑
n,m
n≠m

∑
𝜆
f 2nm𝜆ℏ𝜔𝜆a†nam(b𝜆 + b†−𝜆) dynamic off-diagonal disorder term

H4 =
∑
n
𝛿𝜖na†nan +

∑
n,m
n≠m

𝛿Jnma†nam static diagonal and off-diagonal disorder term (3.34)

where

a†n (an) is the creation (annihilation) operator for an electron in an orbital of energy 𝜖n at the
molecular site n.

b†𝜆 (b𝜆) is the creation (annihilation) operator for an vibrational mode of energy ℏ𝜔𝜆.
𝜖n is the energy in a perfectly ordered lattice and 𝛿𝜖n is its variation due to static disorder.
Jnm is the electronic interaction between site m and n in a perfectly ordered lattice and 𝛿Jnm is its

variation due to static disorder.
gn𝜆 and fnm𝜆 are dimensionless coupling constants for the electron–phonon coupling.

In Eq. (3.34), H0 yields the total energy of a system in which the molecules are electronically and
vibrationally excited. In H0, coupling between the electronic excitation and vibrational modes is
not considered. The transfer of an electron from site m to site n is given by H1. The interaction
between the electronic excitation and the intra-molecular or inter-molecular vibrations (i.e., vibrons
and phonons) are included given by H2 and H3.This is also referred to as polaronic effects. Note that
in the context of organic semiconductors the use of the term polaronic thus differs from its use in
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the field of crystalline inorganic semiconductors. InH2, the energy of the site is reduced by the inter-
action with the vibrational mode of energy ℏ𝜔. In H3, coupling to the vibration alters the transition
probability amplitude from site m to n. Remember that the vibration may be of an inter-molecular
or an intra-molecular kind. Static disorder effects are considered in H4, which describes the changes
to the site energy or transition probability amplitude by variations in the structure of the molecular
solid.
The interactions considered in the polaronic terms H2 and H3 introduce dynamic disorder, since

they are based on coupling of the electronic excitation to vibrations. In contrast, the changes to site
energy and transition rate in H4 are independent of vibrations. They are merely due to variations in
the morphological structure of the film or crystal, that is, intermolecular distances and orientations,
and they are thus referred to as static disorder.When Eq. (3.34) is written out in amatrix notation, the
site energies appear on the diagonal position of the matrix, and thus energetic variations are some-
times called diagonal disorder while changes in the transition rate from site n to m are disguised by
the term off-diagonal disorder. In the Hamiltonian Eq. (3.34), only linear coupling to lattice vibra-
tions is considered. Throughout this article, the mere expression “disorder” refers to static disorder
only, while we tend to employ the expression “polaronic effects” to discuss the effects due to the
electron–phonon coupling expressed in H2 and H3.
The nature of the charge transfer is determined by the relative magnitude of the interaction energy

Jnm, the strength of the electron–phonon coupling expressed though the coupling constants in g2n𝜆ℏ𝜔𝜆
and f 2nm𝜆ℏ𝜔𝜆, and the degree of static disorder present and expressed through 𝛿𝜖n and 𝛿Jnm. Transport
that is entirely dominated byH1 is band-transport.This transport mode usually pertains to inorganic
semiconductor crystals such as silicon or GaAs. Polaronic transport prevails if the terms H2 and H3
are dominant in Eq. (3.34). In the chemical and life sciences, this is better known as Marcus-type
transport, since the pertinent equations have become popular through the treatment byMarcus [68].
If H4 controls the mode of transport, one talks of disorder-controlled transport. As shall be detailed
below, polaronic and disorder-controlled transport are both a form of hopping transport (as opposed
to band transport). Having clarified some of the terminology used, we can now turn to considering
different modes of charge transfer in more detail.

3.3.2.1 Band Transport
If the interaction energy with the nearest neighbor, Jn, n+1, is large compared to any other energy
present due to dynamic or static disorder (H1 > H2, H3,H4 in Eq. (3.34)), charge transport takes place
through a band. The charge carrier delocalizes as described in Section 2.4.3 to form a propagating
Bloch wave that may be scattered by lattice vibrations. The charge carrier mobility is then given by
𝜇 = e𝜏∕meff, where 𝜏 is the mean scattering time and meff is the effective mass of the charge carrier.
meff is determined by the electronic coupling J . Band transport can occur only if the bands are wider
than the uncertainty of the charge carrier’s site energy. This requirement implies that by zero order
reasoning [3] the charge carriermobilitymust very roughly exceed ea2W∕ℏkT , where e is the elemen-
tary charge,a is the lattice constant, andW is the bandwidth. For organic semiconductors,W ≈ 10kT
and a≈ 0.6 nm so that band transport can be considered to prevail if 𝜇 exceeds about 5cm2 V−1 s−1.
The requirement of the electronic coupling being large compared to dynamic or static disorder can
be fulfilled in molecular crystals at low temperature. Compared to inorganic crystals where cova-
lent interactions prevail, electronic coupling J is weak in molecular crystals and the resulting bands
are rather narrow, typically in the range of 50–500meV [69]. The temperature dependence of the
mobility in molecular crystals is experimentally found to vary as

𝜇 ∝ T−n, 0 < n < 3 (3.35)
and this is accounted for by theory as a result of increasing scattering with temperature by acoustic
phonons, by impurities or by electron-interactions [70, 71]. The reduction of mobility with temper-
ature as expressed in Eq. (3.35) is commonly taken as indication that band-type transport prevails.
A prototypical example of band-like transport in a molecular crystal is contained in the work

of Karl and coworkers who measured electron and hole mobilities in a naphthalene crystal in the
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Figure 3.9 (a) The temperature dependence of the
electron and hole mobilities for in an ultrapure crys-
tal of naphthalene on a double-logarithmic scale for
the applied electric fields E given in the figure par-
allel to the crystallographic a direction. At low tem-
peratures, the mobilities depend on the electric field.
The solid lines indicate a T−n power law temperature
dependence with exponents n= 1.40 for the electron

mobility 𝜇− and n= 2.90 for the hole mobility 𝜇+ .
(Data from Warta and Karl [72].) (b) The anisotropy
in the temperature dependence of the electronic
drift mobility in naphthalene. Curves a–c represent
different crystallographic directions. The arrows indi-
cate the onset of deviation from the 𝜇 ∝ T−n depen-
dence. (Data from Kenkre et al. [73].)

temperature range of 4–300K. Figure 3.9(a) [72] shows that both electron and hole mobilities along
the crystallographic a and b directions increase with decreasing temperature featuring a 𝜇 ∝ T−n law
with exponents of 2.9 (holes) and 1.42 (electrons). Below 30K the holemobilities level off and saturate
at values of the order of 200 cm2 V−1 s−1 depending on the electric field. It is worth remembering that
it took Karl and his coworkers more than a decade to improve the techniques for material purifica-
tion and crystal growth in order to eliminate trapping effects that would otherwise obscure intrinsic
transport at temperatures as low as 4K.The results unambiguously prove that at temperatures below
300K charge transport is band-like.
Whenmeasuring electron transport in a naphthalene crystal along the three crystallographic direc-

tions, a pronounced anisotropy is noted (Figure 3.9(b)) ([73] Figure 3.2). At 20K, the mobility mea-
sured along the crystallographic direction perpendicular to the ab-plane (usually designated as c′-
direction) is one order ofmagnitude lower than that along the a-direction.This reflects the anisotropy
of the transfer integrals J inferred from DFT calculations. It is also remarkable that the lower the
band-type mobility is, the earlier 𝜇(T) deviates from the 𝜇 ∝ T−n dependence when raising the tem-
perature.This is a signature of the breakdown of the band concept to describe transport. It indicates
that now phonon coupling is no longer a weak perturbation of coherent band transport but com-
petes with the electronic exchange interaction. A consequence of this phonon coupling is that the
transport bands shrink and the effective mass of charge carriers increases. Evidence for this band
narrowing with increasing temperature is documented by angle and energy resolved UV photoelec-
tron spectroscopy on thin crystalline pentacene film deposited on graphite. Such experiments reveal
the valence band structure and show that the bandwidth in the a direction ([100] direction) indeed
decreases from 240meV at 140K to 190meV at 300K [74].
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Unfortunately, in many molecular crystals the mobilities measured at or near room temperature
are of the order of 1 cm2 V−1 s−1, indicating that there is a cross-over between band and hopping
motion (see below). Exceptions are crystalline rubrene [75] and perhaps pentacene because of the
comparatively large electronic inter-molecular coupling. This is a challenge for establishing an ade-
quate theoretical concept because perturbation approaches fail. A further complication toward a
unified theoretical formalism is that the conventional polaron hopping approach (detailed below)
is based upon non-local phonon coupling and, even worse, it is restricted to low frequency modes
(ℏ𝜔o ≪ kT). Thus, it neglects the contribution of intra-molecular vibrations. Both assumptions are
serious oversimplifications.Their reconsideration is the subject of more recent research [76–78]. For
further details, the reader is referred to the review article by Coropceanu et al. [69].

3.3.2.2 Hopping Transport
If any of the other energies due to the effects of dynamic or static disorder become significant com-
pared to the nearest neighbor interaction energy (H1 < H2, H3,H4 in Eq. (3.34)), the transport band
made up of delocalized wavefunctions is destroyed. In this case, transport can no longer be described
in terms of bandmotion but rather becomes incoherent.Then, a charge carrier is localized at individ-
ual sites and proceeds by a sequence of non-coherent transfer events. This is referred to as hopping
motion. This is similar to the case of excitons, where one can have a coherent transfer mode via a
delocalized Frenkel exciton and a non-coherent mode via exciton hopping. A transport band can be
destroyed because of too much geometric relaxation when the carrier gets onto the molecule (H2),
too much vibration (H3), or too much initial variation in site energy or inter-site distance (H4).

3.3.2.3 Polaronic Transport
In the context of molecular crystals, polaronic transport has been pioneered by Austin andMott [79],
Holstein [80, 81], and Emin [82].The resulting transport mechanism is equivalent to that suggested
by Marcus for electron transfer from one molecule to another in solution [68, 83]. Consider the sit-
uation of a perfectly ordered crystal where electronic coupling among the transport sites, that is, the
HOMOs or LUMOs of adjacent molecules, is very small compared to the electron–phonon coupling
(H1 ≪ H2,H3; and H4 = 0). In this case, a charge carrier is localized at a given site due to dynamic
disorder. As the charged molecule couples to the surrounding molecules inter-molecular displace-
ments and polarization effects alter the van derWaals energy between themolecules.The charge thus
forms a (small) polaron. Transport occurs via inter-site polaron hopping. As illustrated in Figure 3.10,
the transfer of the charge is associated with a distortion of the molecule and its environment, which
requires reorganization energy 𝜆. As a result, the transfer process becomes thermally activated. The
reorganization energy consists of two contributions, 𝜆 = 𝜆inner + 𝜆outer. One term is called the inner
reorganization energy, 𝜆inner, because it is associated with the intra-molecular distortion occurring
when a molecule becomes charged.The change in molecular energy due to inter-molecular displace-
ment and polarization is called the outer reorganization energy, 𝜆outer. In electron transfer reactions in
aqueous solutions, the latter term is important, because solvation effects are strong. In rigid organic
solids, however, molecular displacements are very small or even negligible. Consequently, the inner
reorganization energy is dominant. As illustrated in Figure 3.10, the inner reorganization energy 𝜆inner
for a transfer of charge frommolecule A to B consists of the sum of the relaxation energies 𝜆A and 𝜆B
for molecule A and B, respectively, that is, 𝜆inner = 𝜆A + 𝜆B.
In the context of molecular crystals, the energy difference between a molecule without the distor-

tion caused by an additional electron and that with the distortion is also known as the polaron binding
energy Epol (Figure 3.11). Austin and Mott [79] demonstrated that half the polaron binding energy
is what is needed as activation energy for transport. We briefly summarize the key points of their
treatment. Consider two identical molecules 1 and 2 with intra-molecular normal mode coordinates
Q1 and Q2 and define their potential energies such that E1(Q1 = 0) = E2(Q2 = 0) = 0. The potential
energy of the neutralmolecules as a function of its normalmode coordinate is thenE1(Q1) = AQ2

1 and
E2(Q2) = AQ2

2. An additional electron that is placed on molecule 1 distorts the molecule. Assuming
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Figure 3.10 Illustration of charge transfer in a per-
fectly ordered molecular crystal. The transfer of a
charge from molecule A to B is associated with a
change (a) in the geometry of the molecules A and
B themselves (expressed graphically by changing
shapes) and (b) in the position and geometry of
the molecules surrounding the charged molecule.
The former gives rise to the inner reorganization
energy 𝜆inner, the latter causes the outer reorgani-
zation energy 𝜆outer. (c) The inner reorganization
energy 𝜆inner is composed of the relaxation ener-
gies 𝜆A and 𝜆B, 𝜆inner = 𝜆A + 𝜆B. 𝜆A is the energy
associated with the change in molecule A from the
equilibrium geometry of the charged state to that of
the ground state immediately after the charge had
been transferred onto B. Similarly, 𝜆B is the energy
associated with the change in B− from the ground
state equilibrium geometry to the charged state
equilibrium geometry, immediately after accepting
the charge. (d) To describe the transfer, it is more

helpful to consider the potential energy of the entire
system (molecule A, B, and surrounding molecules)
as a function of a generalized configuration coordi-
nate describing the entire system. If the charge is
on A, the system is described by the “initial state”
curve with a minimum at Qi . The “final state” curve
with minimum at Qf describes the energy of the
system and its dependence on the geometry when
the charge is on B. The reorganization energy 𝜆
gives the difference in potential energy when the
system is at Qf (=charge on B) instead of Qi (charge
on A). It is the sum of outer and inner reorganiza-
tion energy. The transfer of a charge from A to B
does not require the full value of 𝜆. Rather, it can
take place either by quantum mechanical tunnel-
ing from Qi to Qf or by thermal activation with an
energy E = 𝜆∕4 to the point where initial and final
state potential energy curves cross. The latter is the
key idea of Marcus’ Theory.

only small distortions, the associated energy depends linearly on the molecular distortion, that is, it
is −BQ1. The energy of molecule 1 with a charge on it therefore becomes E1(Q1) = AQ2

1 − BQ1, and
the minimum of the parabolic potential is shifted to a new equilibrium coordinate Q0. It is found by
dE1(Q1)∕dQ1 = 0 and it is Q0 = B∕2A.The associated equilibrium energy of the charged molecule is
E1(B∕2A) = −B2∕4A = −AQ2

0.This is the value of the polaron binding energy Epol.
If the polaron jumps from a site 1 to site 2, the potential energy curves must cross. By simply geom-

etry one can show that the energy needede to distort the molecule from its equilibrium geometry to
that of the crossing point is Ereorg

min = (1∕2)AQ2
0 = (1∕2)Epol.The probability per unit time that an elec-

tron jumps from onemolecule to another, identical molecule is thus proportional to exp(−Ereorg
min ∕kT),

and the activation energy inferred from the temperature dependence of the jump rate is therefore half
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Figure 3.11 (a) The (electronic) potential energy
E = AQ2 of a molecule as a function of a configura-
tion coordinate Q in the harmonic approximation,
with the equilibrium position of the configuration
coordinate set to 0. (b) The additional (electronic)
potential energy E = −BQ that results from a change
in the configuration coordinate such as compres-
sion/elongation of a bond or torsion/planarization of
an angle, presuming linear coupling of the electronic

energy to the configuration coordinate. (c) When
the linear coupling of the electronic energy to the
molecular distortion is added to its usual quadratic
dependence to give E = AQ2 − BQ, a new equilib-
rium position Q0 of the configuration coordinate that
is associated with an lower potential energy results.
The difference in electronic energy with and with-
out the linear coupling term is the polaron binding
energy Epol. (After Austin and Mott [79].)

of the polaron binding energy, that is, (1∕2)Epol. When comparing the Austin and Mott-type treat-
ment with the Marcus-type picture of Figure 3.10, it is evident that Ereorg

min = (1∕2)Epol = 𝜆∕4, that is,
the activation energy for transport is half the polaron binding energy and a quarter of the reorgani-
zation energy 𝜆.
The conceptual approach for polaron hopping has been laid down in the seminal paper by Holstein

[80, 81]. Of course, if the electronic transfer integral was exactly zero, a charge carrier would not
move at all. However, weak electronic coupling can be introduced in the Holstein formalism as a
perturbation. In the classical limit, it is assumed that the phonon energy is small compared to the
thermal energy kT .This yields a hopping rate

kET = J2
ℏ

√ π
2EpolkT

exp
(
−
Epol

2kT

)
(3.36)

where J is the transfer integral. Noting that Epol is half of the reorganization energy, Eq. (3.36) is
identical to theMarcus equation in electron transfer reactions (Box 3.5). FromEq. (3.36), themobility
of a charge carrier can be derived by considering that the mobility 𝜇 relates to the diffusion constant
D via the Einstein relation, 𝜇 = eD∕kT , and the diffusion constant is determined by the hopping rate
through D = (1∕2n)kETa2 where n is the dimensionality of the crystal and a is the distance between
lattice sites. For a three-dimensional system with n = 3, one obtains

𝜇 = ea2J2

6ℏ(kT) 32

√ π
2Epol

exp
(
−
Epol

2kT

)
(3.37)

Equation (3.37) predicts an Arrhenius-type temperature dependence for 𝜇, except when
Epol∕2kT ≪ 1, where the pre-exponential T−3∕2 dependence takes over. For a realistic value of
100meV for Epol the temperature at which 𝜇(T)merges into a T−3∕2 dependence is above 600K.This
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Figure 3.12 The type of temperature dependence of the charge carrier mobility predicted by the Holstein
polaron model in the case of weak (a) and strong (b) electron–phonon coupling.

implies that one should be cautious with the custom of approximating the mobility by

𝜇 = 𝜇0 exp
(
−
Epol

2kT

)
(3.38)

and determining the prefactor mobility 𝜇0 by extrapolating a log𝜇(T) versus 1∕T plot to infinite
temperature.
In cases where the phonon coupling is weak and the temperature is low (T < 300K), the mobility

is controlled by band-type transport. As the temperature increases, there is a superposition of the
(decreasing) contribution of band motion and increasing thermally activated hopping. Eventually
the latter takes over and, concomitantly, 𝜇(T) passes through aminimum. Finally, 𝜇(T)will approach
a T−3∕2 law.This is illustrated in Figure 3.12 ([69]).

Box 3.5 Marcus Theory for Electron Transfer

Marcus was awarded with the Nobel prize for his contributions in describing electron transfer
from a donor molecule to an acceptor molecule in solution [68, 83, 84]. The basic idea of classi-
cal Marcus theory can be summarized by considering two identical, isoenergetic molecules in a
solvent (Figure B3.5.1). The electron donating molecule, the accepting molecule and the solvent
are considered a system that can be described by a generalized configuration coordinate Q and
an associated potential energy curve that is approximated as a parabola. In the initial state, with
the electron still on the donor molecule, the potential energy of the system has a minimum at
Qi. In the final state, when the electron has transferred onto the acceptor, the system’s energetic
minimumoccurs atQf . The energy needed to rearrange the initial system such that itmatches the
final geometry is reorganization energy 𝜆. For electron transfer to occur, it is not necessary that
the initial system distorts to that extent. Rather, electron transfer already occurs at the intersec-
tion of both potential energy curves. By virtue of them being equal parabolas, this intersection
can be reached with an activation energy of 𝜆∕4, which can be provided by thermal fluctuations,
that is, excitations of (internal or external) phonons. Fluctuations in the vibrational coordinates
(internal phononmodes) need tobe consideredwhenequilibriumbond lengths or angles change
between the initial and final state of the donor or acceptor. In addition, fluctuations in the orien-
tational coordinates of the solventmolecules (external phononmodes) are particularly important
in polar solvents. The rate constant for electron transfer then depends on the probability of reach-
ing the intersection (giving rise to an exponential factorwith an activation energyEa), a frequency
for crossing attempts (e.g., collision frequency), and the probability for crossing the surface (such
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as the transmission coefficient). In a semiclassical approach, starting with Fermi’s golden rule, the
collision frequency and transmission coefficient are implicitly included in the electronic coupling
J. The rate of electron transfer between identical, isoenergetic molecules is then

W = J2
ℏ

√
π

𝜆kT exp
(
− 𝜆
4kT

)
(B3.5.1)

Classical Marcus theory appears mathematically as the high-temperature limit of Holstein’s
small polaron theory, with Epol = 𝜆∕2 and, for isoenergetic sites, with Ea = 𝜆∕4 = Epol∕2. While
Marcus treated electron transfer between individual molecules in solution, Holstein considered
electron transfer in a molecular crystal [81, 86]. In Marcus theory, one can account for a differ-
ence in potential energy between the initial state (=electron on the donor) and the final state
(=electron on the acceptor) by including the term Δ𝐺0 in the activation energy, thus leading to
the form

W = J2
ℏ

√
π

𝜆kT exp
[
− 𝜆
4kT

(
1 + ΔG0

𝜆

)2]
= J2

ℏ

√
𝜋

𝜆kT exp
[
−
(
𝜆 + ΔG0)2

4𝜆kT

]
(B3.5.2)

Equations (B3.5.1) and (B3.5.2) are valid when the energy of internal and external phonons are
small compared to the thermal energy of the environment, ℏ𝜔 ≪ kT . Marcus theory has been
confirmed bymany experiments. Note that Eq. (B3.5.3) predicts the rate of energy transfer to first
increasewithΔG0 and then to decrease. The latter is referred to asMarcus inverted regime. It arises
because with increasingΔG0 the point of intersection between both potential energy curves first
lowers, then passes through zero and then raises again as can be seen when shifting the two
parabolas vertically. The inclusion of an energy difference between the initial and the final states
of the system in Marcus theory is equivalent to including the effects of energetic disorder in a
(Holstein) polaron model. This shall be discussed further in Section 3.3.2.5.
The classic approach of Eqs. (B3.5.1) and (B3.5.2) is no longer suitable when tunneling between

the initial and final state needs to be taken into account. This can be the case for large energy
differences between the initial and final states, and, in particular, for electron transfer at low tem-
peratures. In this case, the average external phonon modes are still small compared to kT , yet
the internal phonon modes become comparable or even large. As a result, the external phonon
modes and the external reorganization energy 𝜆0 can still be treated classically. However, an aver-
age internal (=high-frequency) phonon mode ℏ𝜔 with associated Huang–Rhys factor S is incor-
porated in a quantum chemical fashion. The corresponding mathematical equation [87–89] for
the rate constant of electron transfer is often referred to asMarcus–Levich–Jortner expression.

W = J2
ℏ

√
π

𝜆0kT

∞∑
n=0

e−S S
n

n! exp
[
−
(
𝜆0 + ΔG0 + nℏ𝜔

)2

4𝜆0kT

]
(B3.5.3)

At very low temperatureswhenboth, internal and external phononmodes become comparable
to kT , Eq. (B3.5.3) no longer applies since both type of vibrations need to be treated quantum
chemically. For this case, Lanzani [90] gives an expression for the energy transfer rate as

W = 2πJ2
ℏ𝜔S

∞∑
n=0

e−(SS+S)
Sp(n)S
p(n)!

Sn
n! (B3.5.4)

where the indexS specifies the external, solvent-relatedquantities andp(n) is the averagenumber
of solvent phonon modes involved in the transition.
Marcus theory has been confirmed experimentally [85, 91]. When deviations seem to occur

between Marcus theory and the transfer rates measured in solution it is worth checking whether
the transfer reaction has inadvertently become diffusion-limited instead of reaction-limited [91].
For further information concerning Marcus theory, we refer the reader to [90–95].
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Figure B3.5.1 Illustrating of Marcus theory of
electron transfer. (a) Potential energy diagram
showing the energy of the entire system (donor,
acceptor, and solvent) in the initial state and in
the final state as a function of a general configu-
ration coordinate QSystem. Transfer from the initial
to final state can occur at the point where the
two potential curves intersect. This requires ther-
mal, that is, vibrational activation to deliver an
energy Ea = 𝜆∕4. In a quantum mechanical treat-
ment, tunneling between the potential minima of
both states may be included (gray arrow). (b) If the
energy of the final state is displaced by ΔG0 com-
pared to the initial state, a correspondingly higher
activation energy is needed. The process of tunnel-
ing in a quantum mechanical treatment requires
phonon activation (gray arrow). (c) The rate of
transfer depends exponentially on the energy dif-
ference to the intersection point of the parabolas,
that is, it is ∝ exp(−Ea∕kT). When the energy of

the final state reduces as shown for parabolas 1–3,
the activation energy for transfer first decreases
(Marcus normal regime), then, as seen for parabola
4, it increases again (Marcus inverted regime). (d)
The electron transfer rate as a function of −ΔG0

measured by Miller et al. [85] for intramolecular
electron transfer for the molecules shown as inset,
that is, from a biphenyl via the spacer shown to
the various acceptor moieties, dissolved in MeTHF.
With increasing energy offset, the transfer rate
accelerates by more than three orders of mag-
nitude, reaches a maximum and reduces again.
The numbers refer to the corresponding parabola
sketched in (c). The maximum is reached for a
value of −ΔG0 = 1.2eV. The solid line is calculated
following Eq. (B3.5.3) below, using ℏ𝜔 = 1500cm−1

and including contributions of a solvent reorga-
nization energy of λ0 = 0.75eV and a a reorgani-
zation energy S ⋅ ℏ𝜔 for the internal vibrational
modes of 0.45eV.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.3.2.4 Disorder-Controlled Transport
Most organic semiconductors used in devices are noncrystalline, implying that variations in the site
energy 𝛿𝜖n and in the distance between sites, and, concomitantly, in the intermolecular coupling 𝛿Jnm
are large compared to the value of intermolecular coupling energy Jnm (H1 ≪ H4 in Eq. (3.34)). This
has a considerable impact on themobility of charge carriers. It implies that charge transport occurs as
a randomwalk by incoherent hopping between neighboring transport sites.The charges are localized
onto the sites because of static disorder. If a system is perfectly ordered and hopping transport results
only from dynamic disorder (perfect polaronic transport), then charge transport is controlled by a
well-defined thermally activated hopping rate that determines diffusivity and mobility of the charges
via the Einstein relation between their diffusivity and mobility as outlined in the preceding section.
In that case, diffusivity andmobility are time-independent. In contrast, in disorderedmaterials the sit-
uation is more complicated because the sites are neither equally spaced nor isoenergetic.This implies
that the jump rates are asymmetric. Forward and backward jumps have different activation energies,
quite in contrast to the polaronic case. Transport is controlled by the occupational probability, pi, of
any site of the system, with the sites (representing chromophores) differing in energy and inter-site
spacing.The transport can be described by a general hopping equation of the form [96],

dpi(t)
dt =

∑
j≠i

[−wijpi(t)[1 − pj(t)] + wjipj(t)[1 − pi(t)]] (3.39a)

where pi(t) and pj(t) are the (time-dependent) probabilities that sites i and j are occupied, respectively.
They become time-independent, that is, constant, once the equilibrium condition dpi(t)∕dt = 0 is
fulfilled. wij and wji are the hopping rate from site i to j and vice versa. Equation (3.39a) accounts for
any density of charges in the DOS. It is thus particularly suited to describe charge transport in OFETs
or SCLC in OLEDs, where charge carrier densities are significant. In the limit of low charge carrier
densities, for example, when describing the motion of charges generated in a TOF experiment, one
can use the approximation pipj ≈ 0. Equation (3.39a) then reduces to

dpi(t)
dt =

∑
j
[−wijpi(t) + wjipj(t)] (3.39b)
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Frequently, the lifetime of a charge is not infinite. Rather, losses can occur with a rate 𝜆i. For example,
such a loss process can be if an electron in a diode structure reaches the electrode and recombines
there with a hole.This can be incorporated into the master equation as [97]

dpi(t)
dt =

∑
j
[−wijpi(t) + wjipj(t)] − 𝜆ipi(t) (3.39c)

Equation (3.39) has to be solved either analytically or numerically and the solution has to be averaged
over all possible realizations of it. An alternative way to describe the disorder transport is using a
Monte Carlo simulation.
A simple concept to explain charge carrier mobility in a disordered organic solid on a microscopic

level is the Gaussian disorder model ((GDM), also known as Bässler model, [98, 99]) and its subse-
quent extensions. It is based upon the notion that charge carriers hop within a manifold of sites that
feature a Gaussian energy distribution and a Gaussian distribution of inter-site spacing. We shall
introduce here the DOS and the hopping rate that may be incorporated in the model and present the
basic elements of the formalism.

The Density of States (DOS) As detailed in Section 2.4.2, the energy levels of molecules in an amor-
phous film characterized by randomly varying intermolecular distances are described by a Gaus-
sian distribution, g(𝜀) = (1∕

√
2π𝜎) exp(−(𝜀 − 𝜀0)2∕2𝜎2), where 𝜀 here is the energy of an individual

molecule, and the standard deviation 𝜎 (the “disorder parameter”) characterizes the width of the
Gaussian distribution. This distribution results mainly from the van der Waals coupling with the
neighboring sites. For conjugated polymers, there is an additional contribution due to the variation
in the lengths and thus the energies of the conjugated segments of the chain. It is important to rec-
ognize that the broadening of DOS expressed through the value of 𝜎 is a result not so much of the
magnitude of intermolecular interactions but rather of their randomness. For instance, when study-
ing the hole mobility of hole-transporting molecules such as TAPCmolecules embedded as dopants
in a matrix, one finds that the hole mobility decreases by two orders of magnitude when the non-
polar polystyrene matrix is replaced by a polar polycarbonate matrix.The reason is that the random
orientation of the dipole moments on the carbonyl groups roughens the energetic landscape [100,
101].The effect vanishes if the dipole moments are topologically aligned, for example, in the case in
a molecular crystal composed by polar molecules.
The fact that the DOS distribution is of Gaussian shape is straightforward because the interaction

energy of a charged chromophore imbedded in an amorphous polarizable environment depends on a
large number of coordinates and interactions, each varying statistically. Based upon the central limit
theorem this leads to a Gaussian envelope function.This applies also to neutral excitations (excitons).
In this case, the Gaussian DOS is amenable by absorption and photoluminescence (PL) spectroscopy
as detailed in Chapter 2. For charged molecules, the DOS distribution cannot be assessed optically
since there is no direct optical transition from the neutral to the ionized state. Instead one has to
rely on electrical probing. Using an electrochemically gated transistor Hulea et al. [102] were able to
scan the DOS distribution of a PPV film by controlled variation on the hole injection barrier from the
electrolyte and the film. The experiments confirm that the center of the DOS distribution is indeed
of Gaussian shape but the tail has a more complex structure. This tail is not an intrinsic property of
the PPV film but is due to counter ions (ClO4

− or PF6−) incorporated in the film during doping to
ensure the overall film neutrality.Those ions give rise to long-range Coulomb potential fluctuations
and, concomitantly, to deep states with an almost exponential trap distribution superimposed onto
an intrinsic Gaussian DOS distribution [103]. As demonstrated by calculations, this effect becomes
already noticeable at a dopant concentration exceeding 1017 cm−3 (Figure 3.13). To calculate the DOS
distribution based upon first principles taking into account the charge distribution within the hop-
ping sites, the anisotropic polarizabilities, and molecular packing is a theorist’s dream.While there is
significant progress toward this challenging goal, so far quantitative agreement with experiment still
requires further work [104, 105].

Holger Frauenrath
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Figure 3.13 The effect of doping on the density of
states distribution in a disordered organic semicon-
ductor at variable concentration of charged dopants.
The energy scale is normalized to the width of the

DOS, expressed through 𝜎, of the undoped sample
(𝜎 = 80meV). The calculation is for an intrinsic site
concentration of 1021 sites cm−3 and a dielectric con-
stant of 3. (Data from Arkhipov et al. [103].)

(a) (b)

Gaussian DOS
Exponential DOSE

ne
rg

y

0

DOS

DOS

Figure 3.14 Comparison between a Gaussian and
an exponential DOS with the same site concentra-
tion (a) for the full energy range of the DOS and (b)
zoomed in to the tail states. Notice that the Gaus-
sian DOS tails off faster as a function of the site
energy than an exponential DOS. While here the

exponential DOS is drawn symmetrically centred at
zero, in a real system, of course, only the part below
zero is considered to describe the tail states of a
band. Note that the integral DOS in both cases is
comparable.

The Gaussian DOS is sometimes approximated by an exponential function in order to facilitate the
mathematical treatment, in particular when integrals are involved (Figure 3.14). While this can be a
reasonable approximation for an intermediate energy interval, the infinitely long tail of the exponen-
tial function is a poor match at low energies.This creates artifacts when describing charge transport
at long timescales when carriers relax to the bottom of the DOS.
In the original Bässler model (GDM), any correlation between the energies of the hopping sites

had been disregarded. In a real world specimen, however, correlation can be expected. Consider a
site M with a comparatively large van der Waals coupling to its neighbors.This may perhaps be due
to a local compression, or due to a particular orientation of polar neighbors. Molecules adjacent to
site M will find themselves in a related, similar environment and will thus be similarly affected. As
a result, the energies of adjacent sites are correlated. For example, if the energetic disorder results
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Figure 3.15 Illustration of correlated disorder. (a)
Positive and negative variations of the site energy
from the mean value are indicated by black and
white spheres, with the radius corresponding to the
magnitude of the deviation in a three-dimensional
view and (b) as a two-dimensional cross section.

(After Novikov and Vannikov [107].) (c) The variation
of site energy with space shown for uncorrelated
disorder and (d) for correlated disorder. The spread
of values, indicated by the dashed arrow, is identical
in both cases.

from the interaction of a charge with random permanent dipoles, the three-dimensional correlation
function for the site energy is f (r) ∼ 𝜎2a∕r, that is, it decays slowly with intersite separation r [106].
Here, 𝜎 characterizes the energetic disorder and a is the charge-dipole separation.The strong corre-
lation of the site energy in an ensemble of uncorrelated dipoles has its origin in the long-range nature
of the dipole electrostatic potential. The fall-off with distance is faster for lower dimensions – for
a 2D lattice, f (r) ∼ 1∕r3 and for a 1D lattice, f (r) ∼ (log r)∕r3 [107] – and for the case of a charge
interacting with induced dipoles (instead of permanent ones) [21, 108]. The energy landscape that
results when correlations are included can be considered as one in which a larger-scale variation of
the potential energy superimposes on small local site energy fluctuations.This is equivalent to a hier-
archical flattening of larger-scale energetic structures without changing the global standard deviation
of the DOS distribution. An illustration of this is given in Figure 3.15. The amended version of the
GDM that includes the effect of site correlation is referred to as the correlated disordermodel (CDM).
At high electric fields, the GDM and CDM models converge. Differences arise when describing the
motion of charges at low electric fields, in particular when the molecules carry some permanent
dipole moment. For fields below about 1× 105 V cm−1, correlation needs to be included to arrive at a
description true to experiment. Correlation effects are less important in non-polar materials, at high
electric fields or when considering the motion of (neutral) excitons.The high computational expense
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in Monte-Carlo simulations and the added complexity in analytical calculations are the main reason
why energy correlation is not routinely taken into account.

The Hopping Rate In the case of polaronic transport between identical molecules, here is no differ-
ence between a forward jump from site i to site j and the backward jump from site j to site i. Both sites
are isoenergetic and have the same polaronic binding energy. In consequence, the associated hopping
rate, Eq. (3.36) is the same for the forward and backward jump. The symmetric nature of the pola-
ronic jump rate is also evident in Eq. (B3.5.1) (in Box 3.5).When introducing static energetic disorder,
this symmetry is broken. If the forward jump is downhill in energy, the backward jump is evidently
uphill, and vice versa.This requires an asymmetric jump rate. A simple approach is to consider that
for the downhill direction, excess energy is simply dissipated while for the uphill transfer, an activa-
tion energy is required in the form of a Boltzmann factor.This introduces an energy dependence that
needs to be multiplied with the transfer rate due to the electronic coupling between the two sites. In
general, this coupling may be approximated as a dipole coupling (with a rate proportional to (r0∕rij)6,
r0 being a constant, rij being the distance between sites i and j), or an exchange coupling (with a rate
following exp(−2𝛾rij)) may be considered.The use of dipole coupling can be appropriate to describe
the incoherent hopping of excitons in a disorderedmedium.When describing charge transport, cou-
pling occurs by exchange. This is expressed through the hopping rate wij of Miller and Abrahams
(MAmodel) [109]

wij = 𝜈0 exp(−2𝛾rij) ×
{

exp
(
− 𝜀j−𝜀i

kT

)
, 𝜀j > 𝜀i

1, 𝜀j ≤ 𝜀i
(3.40)

where rij the jump distance between sites i and j, and 𝛾 is the inverse localization radius of the electron
wavefunction. It is related to the electronic coupling matrix element between adjacent sites. 𝜈0 is a
frequency factor (attempt-to-hop frequency). Equation (3.40) implies that the hopping sites are point
sites, neglecting that the dielectric coupling can depend on the mutual orientation of the transport
molecules. The MA model assumes that the Boltzmann factor is equal to 1 for a downward jump
regardless of electric field and that there is always an energy accepting phonon mode available to
dissipate the excess energy released when a charge carrier hops to a lower energy site. In contrast,
thermal activation is required for a jump to a site at higher energy.
When theGaussianDOS is used together with anMA rate in order to account for charge transport,

one obtains a model that is purely disorder-based without any contributions from polaronic effects.
In the language of the Hamiltonian of Eq. (3.34) chosen for illustration, this would correspond to the
case H1 ≪ H4 and H2 = H3 = 0, (with 𝛿𝜖n varying statistically and a variation in 𝛿Jnm resulting from
a positional disorder). Note that such an approach ignores the need for geometric reorganization
energy when a molecule becomes charged. This limitation is eliminated when using Marcus-type
hopping rates, so that polaronic effects are included. The superposition of disorder and polaronic
effects is the concern of the next section, Section 3.3.2.5. We shall first consider the formalism for
and the results obtained with a purely disorder-based model.

The Formalism To proceed from a microscopic description of charge transfer between the chro-
mophores of an amorphous organic semiconductor to a macroscopic description that yields the
macroscopic mobility requires ensembles averaging.This is the most difficult task.
The easiest way to accomplish this is by using a Monte Carlo (MC) simulation.The MC simulation

can be considered an idealized computer-based experiment that is carried out under well-defined
starting conditions on a virtual sample that has an arbitrarily adjustable degree of disorder. It not
only tells you which degree of sophistication is needed for reproducing the behavior of a real-world
sample but also allows you to check the validity of approximations that are inevitably involved in an
analytic theory.
The first analytic treatment of hopping transport in an amorphous solid with a Gaussian DOS

distribution was based upon an effective medium approach (EMA) [97, 98, 110]. This analytic
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treatment allows portraying how an ensemble of independent particles evolves as a function of
energy within in the DOS distribution. The “particle” can either be a charge carrier or be a neutral
singlet or triplet excitation. It turns out that for an undiluted system such as an amorphousmolecular
film, this theory describes the hopping process in a satisfactory way except at low temperatures
when intermediate thermally activated jumps, needed for the continuation of the motion of the
particle, are frozen out [97].
When modeling charge transport in a disordered environment, a useful concept is that of the

effective transport energy [111–114]. This idea is derived from the concept of the mobility edge in
an amorphous inorganic semiconductor [115, 116]. In an amorphous inorganic semiconductor, tail
states are split off from the conduction and valence band. Electrons and holes are localized in those
tail states and transport requires thermal activation from localized to delocalized states.The highest
energy at which states are still localized defines a mobility edge [116]. In amorphous organic semi-
conductors, all states are localized forming a Gaussian DOS distribution, and the charge carriers
reside in the tail states. Their transport requires thermal activation. If thermal excitation promotes
a carrier only to a nearby site from which further jumps away are still energetically unfavorable and
thus unlikely, the carrier is prone to relax back to the original site. In contrast, excitation to states
closer to the center of the DOS implies a good chance to a series of subsequent jumps away from the
initial site.The energy at which such transport away is enabled is called the effective transport energy.
It is below the center of the Gaussian DOS and depends on temperature.

The Resulting Microscopic Description The disorder model can readily account for the motion of a
packet of charge carriers.The following pertinent features become apparent.
Consider a charge carrier or, equivalently, a neutral exciton generated at an arbitrary site within

a DOS distribution. It hops from one site to the next, thereby relaxing toward the tails of the
distribution. While initially energetically downhill hops will dominate the carrier’s path, eventually
a balanced equilibrium between downhill and thermally activated uphill jumps will be established
and a quasi-equilibrium is obtained (Figure 3.16). The mean quasi-equilibrium energy 𝜀∞ of the
carriers is then given by the long time limit of the statistically weighted average, using the Gaussian
g(𝜀) = (1∕

√
2π𝜎) exp(−(𝜀 − 𝜀0)2∕2𝜎2) with 𝜀0 = 0 for the distribution function.This yields

𝜀∞ = lim
t→∞

𝜀(t) =
∫

+∞

−∞
𝜀g(𝜀) exp(−𝜀∕kT)d𝜀

∫
+∞

−∞
g(𝜀) exp(−𝜀∕kT)d𝜀

= − 𝜎2

kT (3.41)

If the mean carrier energy, relative to the center of the DOS, is normalized to its standard devi-
ation, one can write Eq. (3.41) in the form 𝜀∞∕𝜎 = −[kT∕𝜎]−1, that is, the disorder-normalized
quasi-equilibrium energy is inversely proportional to the disorder-normalized thermal energy. As

Charge
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–

DOS ρ(ε) Space

–

Figure 3.16 Illustration of a charge carrier, generated at an arbitrary energy, that hops within a Gaussian
DOS. The dotted horizontal line is the energy at which the charge carriers tend to equilibrate in the long
time limit.
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Figure 3.17 Illustration of temporal evolution of a packet of non-interacting charge carriers that relaxes
within a Gaussian DOS distribution. 𝜀∞, in units of kT, is the energy at which quasi-equilibrium is attained.
(After Bässler [99].)

the disorder model applies not only to the motion of charges but also to the motion of excitons, the
temperature shift of 𝜀∞ can be readily observed as a temperature shift in the emission spectra (see
Section 3.7.3).
Using Monte Carlo simulation or EMA calculations, one finds that the mean energetic relaxation

of excitations (charges or excitons) in a Gaussian DOS follows a logarithmic decay law with respect
to time, 𝜀(t) ∝ ln(t∕t0), until the equilibrium energy is reached in the long time limit (Figure 3.17). An
exception to this is the very low temperature rangewhen themotion of charge carriers becomes kinet-
ically frozen out so that a charge gets stuck in a local energy minimum instead of reaching the lower
equilibrium energy. Experimental evidence can be observed easily for excitons when considering the
time dependent shift of emission spectra in a neat film as discussed in Section 3.7.3.
One consequence of the time-dependent energetic relaxation is that the diffusivity, and concomi-

tantly the mobility of charge carriers also become time-dependent until the carriers have reached
the quasi-equilibrium energy. Once that is reached, diffusivity and mobility are time-independent.
As mentioned in the context of Eq. (3.1), the diffusivity is given by square of the distance traveled in a
time interval divided by the time interval, D = l2∕t.The mobility results from the diffusivity through
the Einstein relation, Eq. (3.7), eD = 𝜇kT . If a carrier is placed somewhere in the DOS, say, energeti-
cally close to the center, it will initially find many lower energy sites to jump to, thus quickly diffusing
away from its initial site and covering some distance within a time interval. At later times, the carrier
is surrounded by many sites of equal and few of lower energy resulting in a more randomly oriented
diffusivemotion that covers less total distance in a given time interval, thus leading to a reduced diffu-
sivity compared to the early time situation. From this brief discussion, it is evident that diffusivity and
mobility depend on time as well as on the initial energy of the carrier within the DOS. This is illus-
trated in Figure 3.18. Note that when starting at very low energies in the DOS, the carrier diffusivity
may even reduce significantly before merging to the long-time quasi-equilibrium value.
As the diffusivity depends on time, temperature, and local energy landscape, the transport of an

ensemble of charge carriers becomes dispersive until the quasi-equilibrium is attained (Box 3.6).This
can be observed when a packet of charge carriers is generated optically in the course of a ToF exper-
iment. Right after their generation, the charge carriers relax energetically toward quasi-equilibrium.
This is revealed by the initial decay of the ToF signal that merges into a plateau indicating that the
relaxation process is finished.The plateau is associatedwith a constant displacement current that per-
sists until the sheet of carriers initially generated reaches the counter electrode. When lowering the
temperature, the relaxation is slowed down and local variations in the diffusivity becomepronounced.
As a result, some carriers in the wave packet move with higher mobility, others with lower, and the
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Figure 3.18 The log of the energy-and time-
dependent diffusivity D(𝜀, t) calculated by an
effective medium approach for transport at 230 K in
a Gaussian density of states of width 𝜎 = 100meV

and density= 8× 1018 cm−3. The diffusivity is cal-
culated for different start energies. (Data from
Movaghar et al. [97].)

overall transport becomes dispersive. The sheet of charge carriers no longer arrives at the counter
electrode at a reasonably well identifiable time and the ToF signal becomes smeared out and looses
its kink marking the arrival time.This typically occurs above a critical disorder parameter 𝜎∕kT > 4.
This is illustrated in Figure 3.19. For an overview on ToF measurements, we refer to [117].

Box 3.6 The Continuous Time RandomWalk (CTRWModel)

The continuous time random walk (CTRW) concept has been introduced by Scher and Montroll
[120] to understand why charge transport in amorphous inorganic semiconductors such as
chalcogenides is dispersive, that is, the velocity of an ensemble of charge carriers decreases
continuously with time. In the early seventies, those materials were used as photoreceptors used
in Xerography. Scher and Montroll postulated that in an amorphous system, the probability
of a charge carrier to leave an occupied lattice site is not an exponential function of time but
rather controlled by a broad waiting time distribution Ψ(t) = t−(1+𝛼), with 0< 𝛼 < 1 being a
dispersion parameter. This function is introduced in a heuristic manner and is not directly related
to microscopic parameters. This form of the waiting time distribution gives rise to a slowing
down of the velocity of an ensemble of charge carriers. It predicts a ToF signal that features a
time dependence of the photocurrent (PC) of the form

j(t) ∝
{

t−(1−𝛼), t ≤ ttr
t−(1+𝛼), t > ttr

(B3.6.1)

inwhich ttr is the effective transit timedefinedby the kink in the ln j(t) versus ln t dependence, and
𝛼 is a dispersion parameter, In the case of an exponential distribution of hopping sites 𝛼 = T∕T0,
where T0 is the characteristic temperature of the distribution of hopping states. It is important to
keep inmind, however, that theparticularwaiting timedistributionΨ(t) chosenbyScher etal., and
the resultingdispersive PC is only realized in systems inwhich charge transport takes place via car-
rier jumps fromanexponential distributionof localized states to aneitherwell definedconduction
bandedgeor to a so-calledmobility edgewithin adistributionofhopping states [121]. The charac-
teristic feature of transport in an exponential DOS is that a transient PC remains dispersive within
the entire time regime, that is, a ToF signal never attains a plateau because quasi-equilibrium is
never attained. This is at variance with experimental results on a great variety of random organic
semiconductors. Historically, the need to consider disorder transport arose during the develop-
ment of the xerographic process in the 1970s.
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If quasi-equilibrium is established and the number of charge carriers is much less than the number
of hopping sites, then the carriers occupy sites with amean energy−𝜎2∕kT relative to the center of the
Gaussian DOS distribution. In this case, transport requires that charge carriers have to be thermally
activated to reach the effective transport energy where transport occurs. Since the quasi-equilibrium
energy decreases with temperature, the activation energy must increase accordingly. Therefore, the
temperature dependence of the mobility must deviate from the Arrhenius’ law and bear out a

𝜇 = 𝜇0 exp
(
−C

( 𝜎
kT

)2)
(3.42)

law, tacitly assuming that geometric relaxation in the course of hopping transport is unimportant.
The C is a scaling parameter that takes into account that both the initial and final hopping states are
distributed in energy. For a three-dimensional system, one finds C = 0.44 (≈(2/3)2). A representative
experimental result is shown in Figure 3.20, illustrating that the mobility data fit to the exponential
1∕T2 dependence and not to the exponential 1∕T dependence that would be characteristic for a
purely polaronic transport [122, 123]. Note, however, that in practice, it is often difficult to distinguish
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Figure 3.19 In (a) it is shown how the time of
flight signal of holes migrating in glass of the
molecule depicted above becomes dispersive upon
cooling from 283 to 191 K. (Data from Borsen-
berger et al. [118].). In (b) and (c), the TOF-signals
are shown for a 1 μm thick film of the polymer PFO
depicted above that was measured at 20 V. The data

are plotted on a double-logarithmic scale so that the
transit time 𝜏tr can be inferred from the change of
slope. The inset shows the same data on a linear
scale. In (b), the film was annealed at 120 ∘C result-
ing in non-dispersive transport. In (c) the film was
not annealed and the transport is dispersive. (Data
for (b) and (c) from Kreouzis et al. [119].)


